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AbItrac:t-The transient response of an inhomogeneous elastic solid to a torsional ring load is
considered. The load is suddenly applied to a cylindrical wall in the solid and tben moves along
a bore. The inbomoaeneity of the solid is assumed as Il/JIo = p/Po = (r/a)A. so that SH·wave velocity
is constant throughout the solid.

A general form ofsolution is obtained for an arbitrary motion of the load. It can be applicable
to both transient and steady-state problems of the moving/stationary load. Explicit expressions for
the displacement are given for three types ofthe load applications; (a) impulsive load, (b) step pulse
load, (c) uniformly moving load. Numerical computations are carried out for the displacement in
detail. The displacement singularities at wave fronts and beneath tbe loaded point are also
discussed.

INTRODUCTION
The dynamical problem of an elastic solid with a cylindrical bore has considerable
importances in engineering however, the response of the bored elastic solid to a moving
load has been less studied. The presence of the cylindrical bore causes the dispersion of
wave and then the mathematical treatment for these problems becomes so complex. It
seems that the researches in this area are limited only to the steady-state problems in a
homogeneous elastic solid. Parnes [I) presented an analytical procedure for non
axisymmetric problems of normal, tangental and torsional loads moving superseismicaJIy
in a cylindrical bore, but numerical computations were carried out only for the axismmetric
case of the normal load. The problem of a moving torsional load was also discussed by
him [2), where numerical computations were Cllrried out in detail for subseismic, seismic
and superseismic velocities of the load.

Excepting Parnes's works, we cannot find any contribution to the problem of the
moving load in the bored elastic solid. Of course, no transient problems of this type were
there. The present paper considers the transient response ofan inhomogeneous elastic solid
to a moving torsional load in a cylindrical bore. Its inhomogeneity is assumed that rigidity
Jl and mass density p vary only with radial distance r so that SH-wave velocity is constant
throughout the solid. A general form of solution, which is applicable to both transient and
steady-state problems of the dynamic load, is obtained for two cases of the inhomogeneity.
One is that the rigidity and the density increase linearly with the radial distance and the
other is inverse of the former. Explicit expressions of the displacement are obtained for
three types of the loading; (a) impulsive load, (b) step pulse load, (c) uniformly moving
load. Numerical computations for the displacement response are carried out in detail and
the singularities at the wave fronts and beneath the loaded point are discussed. It is shown
from the figures that a valley of the deformation is found only in the increasing case of
the material parameters. The effect of the inhomogeneity on the response fades out with
increasing of Mach number of the moving load.

Aside from the academic interest and possible application of the inhomogeneity
assumed here, the present solution. is exact and could possibly be used for assessing the
accuracy of approximate methods of solutions in elasto-dynamic problems.

STATEMENT OF PROBLEM

Consider a cylindrical bore of radius a in an inhomogeneous elastic solid and take a
cylindrical coordinate system (r, 9, z) whose z-axis lies on the axis of the bore (Fig. I).
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Fig. I. Moving torsional ring load in a cylindrical bore.

A torsional ring load is suddenly applied to the surface of the bore and then moves along
it. It is also assumed that the distribution of the load is symmetric about the z-axis.
Non-vanishing components of stress and displacement are a,e, a:ll and U8. Equation of
motion and constitutive equations are given by

2
a 16 , + -a16 + a:8, =pUStl. r . .

where rigidity Jl and mass density p vary only with radial distance r.

JljJlo = pjpo = (rjaY

(I)

(2)

(3)

where subscript 0 stands for the quantities at the cylindrical wall, , = a, and constant I,
is an inhomogeneous parameter to be specified later. Equation (3) states that SH-wave
velocity is constant throughout the solid. That is

(4)

We shall assume that the magnitude and position of the moving load are to be
time-dependent and are expressed by F(/) and i(t), respectively. The boundary condition
at the cylindrical wall is given by

a'8 =F(t)c>(z - z(/»H(t) ;, =a (5)

where c>( ) and H( ) are Dirac's delta and Heaviside's unit step functions, respectively.
A radiation condition at infinity, ' .... 00,

Us ....O ; r .... oo

and a quiescent condition at initial time, 1 = 0,

Us = US,I = 0 ; 1=0

are also employed.

(6)

(7)
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GENERAL PROCEDURES

Let us introduce the following non-dimensionalizations;

e= ria, (=:: la, t = ella

F(r) == F(ar/c), I(r) =i(ar/c)la
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(8)

(9)

Substituting eqn (8) and (9) together with eqn (2) into eqn (I), we get the displacement
equation as

Applying the integral transforms,
Fourier transform:

f
OO 1 foo!(,,) = _!(O exp(i"O d(, !(r) =2n _rs,!(") exp( - i"O d"

and Laplace transform:

(10)

(II)

r(s) = r""!(r)exp(-sr)dr, !(r) =-2
1

. r r(s)exp(sr)ds (12)Jo mJ~

to eqn (10), we have the transformed solution as

where

v = )..12 + 1

P= (e 2+ S2)112; Re(p) > 0

(13)

(14)

(15)

(16)

(17)

and l.() and K.() are the modified Bessel functions of the first and second kinds,
respectively. ~(j = 1,2) are unknown coefficients to be determined by the conditions,

li OO

a~ = - F(u) exp{i"J(u) - su} du ; e= 1
a 0

Equation (19) states C1 = 0 and eqn (18) demands

Then, the transformed displacement yields

e-i.l, K(pe) roo
Ot= - JJofJ K:+,(P)Jo F(u)exp{i"/(u)-su}du.

(18)

(19)

(20)

(21)

Stresses will be obtained easily with substitution of eqn (20) into eqns (14) and (15).
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INVERSION

We shall consider an inversion of the transformed displacement given by eqn (21). Two
cases of the inhomogeneous parameter are discussed,

Case A: ;.:::; I. v :::; ~

CaseB: ).=-I,v=!.

In both cases, the order of the Bessel function in eqn (21) is half of an odd integer. In Case
A, we can use the simple expressions of the Bessel function ({3], p. 80),

KJ/2(z):::; if:(I +~) exp( -z)

KS/2(z) =if:(I + ~ + :2) exp( - z).

Substituting cqn (22) into eqn (21) and manipulating, we get

- I r~ (I I) -
V/I:::; - 2J.lo~ Jo F(u) P+P + P+ q exp{i'71(u) - P~ - su} du

i j3( I 3)i 'to (I I). -- - - - - F(II) -- - -- exp{1I11(u) - P~ - su} du
3Jlo~ ~ 2 0 P+P P+ q

where

e= ~ - t,

(:) = (3 ± ij3)/2.

(22a)

(22b)

(23)

(24)

(25)

Now, applying Laplace inversion formula ([14], Appendix),

L _1{exp( - eP:+:? - SU)} H( ;)[J.(~( f f'2)
J 2 2 = t-u- .. ol1y\t-u-."

ex+ 11 +s

-ex rJ(f-UIL~ x 'o(l1x )exp{ -ex(J(t -U)2- x2_ e>ldx] (26)Jo J(t _U)2_ X 2

where IX takes p or q and Jo( ) is Bessel function of the first kind, to eqn (23), we get

08= __I r~H(t - u - e)F(U)exP{iI11(U)}[JO(I1J(t - U)2 - (2)
J.lo~ Jo

-~f;-l3COS{4<X -e)} + j3sin{f(x - e)}]
x Jo(I1J(t - U)2 - x2)exp{ - tx - e)} dx] du - ~,

xG-D foaJH(t - u - e)F(u)exp{iI11(U)} [f;-lcos{f (x - e)}

- j3 sin{f(x - e)}]JO(I1J(t - U)2 - x2)exp{ -~x - e>}dx] duo (27)

The formal Fourier inversion is defined by
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Substituting eqn (27) into eqn (28) and changing the order of integration, we have
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(28)

V8 = - ~e IX)H(r - u - [)F(U{[<l>(J(r - U)2 - e2, C-/(u»

-~f;-13cos{4<x- [)}+ 3 sin{4<x - e)}]
x <l>(J(r - U)2 - x 2, C-/(u» exp{ - ~x - e)} dx]] du

-~eG -~)L~H(r -u -!)F(u{[f;-lcos{4<x -e)}]
+J3 sin{f(x -[)}]<l>(J(r _U)2_ X 2, C-/(u»

x exp{ - ~x - [)} dx]J du (29)

where

(30)

Equation (30) is easily evaluated as

(31)

Then, the final form of the displacement yields

where T(u) is an arrival time function given by

T(u) =u + Jr+ {C -/(u)J2

and its significance is discussed in [5].
The similar inversion procedure is used for Case B. That is

1 iCC [ 1u.=-- Ht-Tu Fu
8 7tJlo 0 ( (» () J(f-u)2-r-{C-/(u)J2

iJtt - II>2-rC-IlIl)}2 exp{-(x-!)} ]
- dx duo

( J(r _U)2_ X2_ {C -/(u)l2

(33)

(34)
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DISCUSSIONS

The transient response of an inhomogeneous elastic solid to a moving load is
determined by eqns (32) and (34). Throughout the inversion process, no restrictions were
given to the load motion l(u). Therefore, eqns (32) and (34) are the general solutions for
the problem of the moving torsional load.

For the convenience of the discussion, we shall summarize eqns (32) and (34) in single
form. That is

(35)

where

C,j = lie, CB =1 (36)

GiX,Y)={(3-~)cos(fx )-J3(I-~)sin(fx )}eXP(-3x/2) (37)

GB(x,y) =exp( - x) (38)

and subscripts j =A and B stand for Cases A and B, respectively.
Equation (35) states that the integrand with respect to variable u shows the disturbance

caused by the load located at time u and that the response at time t is given as sum up
of the disturbance caused at each time u. Then, extending the lower limit of the integral
from 0 to - 00, we can obtain an another form of the solution, that is applicable not only
to the transient problem but also to the steady-state problem of the torsional ring load.
That is

In this solution, the loading condition is given by

I
I1rl1l,.a=-F(t)b(C -l(t»

a

where

-00 <t < 00.

As an example, we consider a steady-state problem of a stationary load,

F(t)=Foexp(iwt),I(t)=O

(40)

(41)

(42)

where w is a dimensionless frequency. Substituting eqn (42) into eqn (39) and changing
the order of integration, we can evaluate the integral with respect to variable u. Then, the
steady-state response of displacement is expressed as

~U8j= iCjeXP(iWt){H~2)(WRo)- f[a> GJ{x -!, e)H~)(wRx)dX} (43)
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where Hh2) ( ) is Hankel function of the second kind and
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(44)

NUMERICAL EXAMPLES

Numerical computations are carried out for three combinations of the loading
functions;

(a) Impulsive load:
(b) Step pulse load:
(c) Moving load:

F(t) = F0e5(t), I(t) =0
F(t) =FoH(t), I(t) =0
F(t) =FoH(t), I(t) =Mt

(45)
(46)
(47)

where Fo is the magnitude of the load and M is the Mach number.
Substituting these loading functions into eqn (39), we can evaluate the integral with

respect to variable u. Then the displacement for each loading is obtained as

(a) Impulsive load

(b) Step pulse load

- ~UBj= CjH(t - Rg){COSh-{~) - f/,2_'2 COSh-{~..)Gtx - eo e)dx}. (49)

(c) Moving load
(c - 1) subseismic velocity (0 ~ M < 1)

- 7C1Jo UB,= ~ H(t - Rg){log(R +~)
Fo ~ JI-M2 R-~

f
Jt2 +{2 R +fi:= - }

- _ log r.:+ _ r::= GJ{x - e, e) dx (50)
( yVx ' yVx

where

vo± =t - M' ±J(t - M02- (1 - M2)(t2- Rg2)

vx± =t - M' ± J(t - M{)2 - (1- M2)(t2- R/).

(51)

(52)

(c - 2) seismic velocity (M = 1)

- ~ UBj =t : ,H(t - Rg){Jt 2- Rg2 - L..,r.r.:rJt2- Rx2Gtx - eo e) dx}- (53)
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where
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"C - M( + j("C .,.... M02 + (M 2 - 1)("C 2 - R0
2)

Xo =-:-::::------:...r=====:7====:=======::=====:=
M( - "C + j("C - M02 + (M 2

- 1)("C 2
- R0

2)

_ "C - M( + j("C - M02 + (M 2 - 1)("C 2 - R})
Xx- M( -"C +J("C - M02+(M2_1)("C2 - R/)

"C* =«( + (,jM 2
- I)/M

(55)

(56)

(57)

(59)

(58)
M

"Cm = (l;"21("C - "C*)
yM2 -1

I A(X, y) ={COs(f x ) - J3(1- ~ ) sin(f x )} exp( - 3x /2)

IJ.x,y) =exp( - x). (60)

In the above examples, the displacement is given in the fonn of single integration.
Numerical computations are very easy. Now, introducing the dimensionless displacement
as

1tJ.lo
V = --UB

Eo
(61)

we carried out the computations for the three loading cases and their results are shown
in Figs. 2-11.

Figures 2 and 3 are for the case of the impulsive load. Figure 2 shows the displacement
response at some observing points «(" 0 and Fig. 3 shows the contours of the displacement
(equi-defonnation curves) at some times. Figures 4 and 5are for that of the step pulse load.

\,
S=1.5

\ ~ = 1
\,

I s= 2
\ ~ = 1
\
\

Fig. 2. Displacement response to an impulsive load.
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--i«---Case B

Fig. 3. Displacement contours for an impulsive load.
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Fig. 4. Displacement response to a step pulse load.
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Case A Case B

Fig. 5. Displacement contours for a step pulse load.

Because of the symmetry of the deformation, the contours in Figs. 3 and 5 are one-sided.
Numerals in these figures are the values of the dimensionless displacement. From these
figures we find that the response in Case A is more complex than that in Case B. It is
interesting that a valley of the deformation is found only in Case A. The valley is formed
near the shallow wave front in the case of the impulsive load. On the other hand, the valley
in that of the step pulse load is far from the wave front.

The computations for the case of the moving load are carried out in three sub-cases
according to the moving velocity;

(c - 1) subseismic velocity:
(c - 2) seismic velocity:
(c - 3) superseismic velocity:

M=0.5
M= 1
M=2.

Results are shown in Figs. 6-11. From Figs. 6, 8 and 10, we can find that the difference
in the displacement between Cases A and B becomes clearer as depth eincreases, and that
it fades out with increasing of Mach number M. Thus we can conclude that the
inhomogeneity of the elastic solid has less effects on the response as the velocity of the
moving load is greater. It should be pointed out that the deformation valley is also found



Transient response of a ~Iid in a cylindrical bore

M= 0.5
~------ - ------
~ £ 1 1·5 2

-1 V~f"nr ll --.

-0·5 l ll ---

0 l l ~.............. --
0.5 l ~l'-. ....-

1 ~I \ bI " " b' .... .. I _.

-- Case A : --- Case B

Fig. 6. Displacement response to a subseismically moving load.
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only in Case A. But, the valley is not recognized before t = 1. After this time the valley
appears and then transits toward the wave front of surface side. When the load moves
superseismically, the valley does not appear in the leading wave region. In this region the
contour in Case B is parallel to the leading wave front. As was in the case of the stationary
load, the deformation in Case A is more complex than that in Case B.

WAVE FRONT SINGULARITY

It is preferable to discuss the wave front singularity for the transient problem of
dynamic load.

A wave front, whose cross section is semi-circular, emanates from an initial point of
the load and is defined by t = Ro. Extracting the singular term from each of eqns (48) to
(SO), we get

(a) Impulsive load

(62)

(b) Step pulse load

(63)
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(C) Moving load

where
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~t = t -~.

(64)

(65)

(66)

When the load moves supcrseismically, the leading wave appears and its front is defined
by t = t·. Across this front a finite jump occurs.

1tJl.o U C 1t •
- F

o
8j- j JM2 -1; t-+t .

Recalling eqn (36), we find that the jump in Case A decreases monotonically with
increasing of the radial distance, but that the jump in Case B is constant.

Finally, the displacement singularity beneath the loaded point is derived for the case
of the moving load. (c - I) subseismic velocity;

1'=0.5

l' = 1

1'=1·5

l' = 2

1'= 3

M =0·5

Case A

(67)

Fig. 7(a). Displacement contours for a subseismically moving load (Case A; A= I).
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r=0.5

r = 1

T= 1·5

r= 2

M = 0·5

Case B

Fig. 7(b). Displacement contours for a subseismically moving load (Case B; ;. ... - I).

(c - 2) seismic velocity;

(c - 3) superseismic velocity;

where

~C ='t' -MC.

(68)

(69)

(70)

CONCLUDING REMARKS

The transient response of an inhomogeneous elastic solid to a moving torsional ring
load is discussed. Two cases of its inhomogeneity are considered.

A solution procedure is developed for a moving load of arbitrary motion and a general
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M= 1

N 1 1·5 2

- 1 l LL
-0.5 Ll l

0 l l l....- --

0·5 l ll'- - ............-

1 l ~~I ..
"-

- Case A : --- Case B

Fig. 8. Displacement response to a seismically moving load.
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l' =0.5

l' = 1

r =1.5

r= 2

r= 3

M =1

Case A

Fig. 9(a). Displacement contours for a seismically moving load (Case A; A'"' 1).
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r=0.5

r= 1

1=1.5

1= 2

r= 3

K. WATANABE

M =1

Case B

Fig. 9(b). Displacement contours for a seismically moving load (Case B; l "" - I).
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M=Z

~ 1 1·5 2
v,

LL-1 L
-Q.5 l-l.k

0 Ll-k
Q.S LL k
1 ~~~
-- Case A : --- Case B

Fig. 10. Displacement response to a superseismically moving load.
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M=2
T=

T= 2

T=

T= 2

Case A

Case B

Fig. II. Displacement contours for a superseismically moving load.

form of the solution is obtained. The solution is applicable to both transient and
steady-state problems of the load. For the three cases of the loading the explicit expressions
of the solution are derived. Numerical computations are carried out for the displacement
in detail.

It is shown that the effect of the inhomogeneity is not so clear in the response as the
load moves superseismically. When both the rigidity and the density increase with the
radial distance (Case A), a valley of the deformation appears. The singularities at the wave
fronts and beneath the loaded point are discussed. The jump across the leading wave front
is constant in Case B, but it in Case A decreases with the radial distance as the load moves
superseismically.
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